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Abstract

Vividly imagining a song or a melody is a skill that many people accomplish with relatively lit-

tle effort. However, we are only beginning to understand how the brain represents, holds,

and manipulates these musical “thoughts.” Here, we decoded perceived and imagined mel-

odies from magnetoencephalography (MEG) brain data (N = 71) to characterize their neural

representation. We found that, during perception, auditory regions represent the sensory

properties of individual sounds. In contrast, a widespread network including fronto-parietal

cortex, hippocampus, basal nuclei, and sensorimotor regions hold the melody as an abstract

unit during both perception and imagination. Furthermore, the mental manipulation of a mel-

ody systematically changes its neural representation, reflecting volitional control of auditory

images. Our work sheds light on the nature and dynamics of auditory representations,

informing future research on neural decoding of auditory imagination.

1. Introduction

Imagine your friends throwing a birthday party for you. At the climax, you begin to hear the

first sounds of a well-known tune. “Happy birthday to you. . .”, they cheerfully sing while you

blow the candles and slice a delicious cake. If you are like most people, you can vividly recall

the tune that your friends sing for you [1]. You may even recall the voice of a cherished friend

or the crowd singing painfully out of tune. Yet, we are only beginning to understand how the

brain represents, holds, and manipulates these musical thoughts [2].

Here, we consider 2 kinds of auditory imagination: Recall and manipulation. During recall,

we accurately imagine previously known sounds. During manipulation, we imagine a modi-

fied version of the original sounds. In the brain, recall engages a widespread network including

superior temporal gyrus, motor cortex, supplementary motor area, thalamus, parietal lobe,

and frontal lobe [3–17], while manipulation further involves the frontal and parietal lobes
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[18,19]. With the exception of the visual cortex, these brain areas are largely consistent with

those engaged in visual imagery [20–22]. However, it is unclear how these regions represent

imagined sounds. By representation, we mean the neural activity patterns that distinguish an

auditory object from others. Understanding neural representations is crucial for elucidating

how the brain recreates and transforms auditory images in the mind’s ear.

A powerful technique to study auditory representations is multivariate pattern analysis

(MVPA) [23], where patterns of neural activity are used to decode features of mentally held

objects. If neural signals carry object-specific information, decoding accuracy is different from

chance. By inspecting decoding model coefficients, it is possible to identify the features of neu-

ral activity that underlie mental representations. Using similar techniques, functional magnetic

resonance imaging (fMRI) studies showed sound-specific representations in primary and sec-

ondary auditory cortex [24–27] and frontoparietal association areas [28,29] during mainte-

nance in working memory and imagination. Other studies demonstrated imagined sounds

decoding from scalp electroencephalography (EEG) [30–32]. However, it remains unclear (1)

how sound sequences are represented in auditory and association areas; (2) how these repre-

sentations evolve in time; and (3) how they change when mentally manipulated.

Here, we used MVPA of brain activity recorded with magnetoencephalography (MEG,

Fig 1A) to investigate how perceived, imagined, and mentally manipulated short auditory

sequences are represented in the brain. For each trial in the task, participants listened and then

were instructed to vividly imagine a short three-note melody (Fig 1B). In the recall block, par-

ticipants imagined the melody as presented, whereas in the manipulation block they imagined

it backwards (e.g., A-C#-E becomes E-C#-A). After a delay, they heard a second melody,

which was the same as the first one, its backward version or a totally different one. Participants

answered whether the second melody was the same as the first one or not (recall block) or the

inverted version of the first one or not (manipulation block). Importantly, there were only 2

melodies to imagine in the task, which were backward versions of each other.

We first used a time generalized decoding technique [23] to characterize the neural dynam-

ics of auditory representations. Then, we assessed whether mentally manipulating the melodies

changed their neural representation. In the manipulation block, participants suppressed the

forward pattern and mentally reinstated its backward version. Therefore, we predicted below-

chance performance when training on manipulation and testing on recall and vice versa.

Finally, we inspected model coefficients to identify the brain regions and neural activity fea-

tures that discriminate between melodies and assessed how they changed between listening

and imagination.

2. Results

2.1. Behavior

Participants (N = 71, 44 female, age = 28.77 +/− 8.43 SD) performed with high accuracy

(Fig 1C) and were better (OR = 1.85, CI = [1.25–2.72], p = 0.002) in the recall (96.7%, CI =

[95.6–97.6]) than the manipulation (94.1%, CI = [91.9–95.8]) block. Incorrect trials were

excluded from MEG analyses. After the experiment, participants rated task-related imagery

vividness on a 7-point Likert scale (from −3 to 3), with 72% of them rating 0 or above, which

ranges from mild to strong vividness (Table 1). The good task performance and the vividness

ratings suggest the presence of melody-specific information during imagination. Behavioral

accuracy was associated with general working memory skills [33] (Wechsler Adult Intelligence

Scale–WAIS; recall: r(69) = 0.3, p = 0.012; manipulation: r(69) = 0.29, p = 0.016; Fig A in S1

Appendix). No significant relationship with music training was found [34] (Goldsmiths Musi-

cal Sophistication Index–GMSI; recall: r(69) = 0.13, p = 0.28; manipulation: r(69) = 0.23,
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p = 0.063; Fig B in S1 Appendix; see also Fig F and G in S1 Appendix for further exploratory

analyses on possible associations of neural decoding with behavioral accuracy, vividness rat-

ings, and music training).

2.2. Above-chance decoding of perceived and imagined melodies

To investigate the neural dynamics of musical representations, we trained logistic regression

models on MEG sensor data (Fig 1D) to classify melody identity (melody 1: A-C#-E versus

melody 2: E-C#-A) at each time point of the trials. To assess whether representations recurred

over time, we evaluated the models at each time point of the test data, resulting in time-gener-

alized accuracy matrices (Fig 1E). We used 2 types of testing: Within-condition (training and

testing on recall trials or training and testing on manipulation trials) and between-condition

(training on manipulation trials and testing on recall trials or training on recall trials and test-

ing on manipulation trials). The latter aimed to reveal whether mentally manipulating the mel-

odies changed their neural representations.

Fig 1. Materials and methods. We used MEG (a) to record the brain activity of 71 participants while they performed an imagery task (b). On each trial,

participants heard and then imagined a short three-note melody. In the recall block, they imagined the melody as presented, while in the manipulation block,

they imagined it backwards. Afterwards, they answered whether a test melody was the same as the first one (recall) or its backward version (manipulation).

Participants performed with high accuracy (c) in both blocks. See S1 Fig for data related to this figure. MEG signals (d) were used to decode melody identity.

We used a time-generalization approach (e) in which models were trained at each time point of the training trials and tested at each time point of the test trials,

resulting in time-generalized accuracy matrices. We transformed model coefficients into patterns of activation (f) and localized their brain generators. Dashed

lines mark the onset of the second (0.5 s) and third (1 s) sounds of the melodies.

https://doi.org/10.1371/journal.pbio.3002858.g001

Table 1. Vividness ratings at the end of the task across participants.

Rating −3 −2 −1 0 1 2 3

Number of participants 1 4 8 10 25 12 4

Percentage 1% 6% 11% 14% 35% 17% 6%

https://doi.org/10.1371/journal.pbio.3002858.t001
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We observed above-chance within-condition decoding during listening and imagination

for both recall and manipulation (p< 0.001; Fig 2A; see Table B in S1 Appendix for full statis-

tical report). This further confirms that mental representations were present during the imagi-

nation period. Furthermore, we observed below chance performance when training around

0.3 s and testing around 1.3 s and vice versa reflecting the fact that the first sound (starting at 0

s) in one melody was the third sound (starting at 1 s) in the other melody (p� 0.016). This

indicates that sound-specific representations discriminated between melodies at these time

points. Note that the second sound (C#) was always the same.

2.3. Volitional control over imagined melodies

We used between-condition testing to decode the identity of the perceived melody at all time

points in the trial and detect manipulation-related changes in neural representations. Thus, if

during manipulation participants inhibited the representation of the perceived melody and

reinstated the representation of its backward version, between-condition tests should

Fig 2. Accuracy for (a) within-condition decoding (train and test in the same condition), (b) between-condition

decoding (train in one condition and test on the other), and the difference between the two (c). A time-generalization

technique was used in which models were trained at each time point of the training data and tested at each time point

of the test data. Accuracy across the diagonal is shown at the bottom of each plot. Contours and bold segments

highlight significant clusters of above-chance or below-chance accuracy. Note how between-condition testing yields

below-chance accuracy during imagination, suggesting a flip in neural representations. Dashed lines mark the onset of

the second (0.5 s) and third (1 s) sounds of the melodies. See S2 Fig and the online repository for data and statistical

outputs related to the current figure.

https://doi.org/10.1371/journal.pbio.3002858.g002
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systematically predict the opposite of the perceived melody, resulting in below-chance accu-

racy in the imagination period. Indeed, we found below-chance accuracy both when training

on recall and testing on manipulation (p� 0.048) and when training on manipulation and

testing on recall (p� 0.018; Fig 2B; Table A in S1 Appendix). In both cases, accuracies were

lower for between-condition than within-condition testing (p� 0.035; Fig 2C). This indicates

a flip in neural representations such that models trained in one condition consistently pre-

dicted the opposite when tested on the other condition.

We also considered the possibility that representational dynamics were different between

recall and manipulation. Indeed, when models were trained in the imagination period

(approximately 3.5 s) and tested on the listening period (approximately 1.2 s) or vice versa,

within-condition accuracy was lower (p� 0.033) for manipulation than recall (Fig C in

S1 Appendix). This may reflect the fact that, for the manipulation block, the representation of

the first melody was inhibited, thus leading to lower generalization across listening and imagi-

nation. Overall, these findings indicate that, in the manipulation block, participants inhibited

the perceived melody and reinstated its backward version, resulting in a flip of neural repre-

sentations. This provides evidence of volitional control over mental auditory representations.

2.4. Musical sound sequences are represented in auditory, association,

sensorimotor, and subcortical areas

To elucidate the brain regions and neural features that distinguish between the melodies, we

transformed the model coefficients into interpretable patterns of activation as described in

[35], and localized their brain generators (Fig 1F). The resulting patterns can be interpreted as

the differences in neural activity that discriminate between melodies and underlie successful

decoding. We focused on average brain activity at 4 different periods: 3 during listening (0.2

s–0.5 s, 0.7 s–1 s, and 1.2 s–1.5 s) and 1 during imagination (2s–4s). For listening, we chose

200 to 500 ms after onset of each sound, starting at accuracy peaks (0.2 s and 1.2 s) and includ-

ing sustained activity until sound offset. For the imagination period, we included the whole

time interval due to the lower signal to noise ratio, the lack of prominent peaks, and the inher-

ent temporal variability of mental images.

2.4.1. Auditory representations during listening. Patterns of neural activity distin-

guished between melodies in several brain areas. For the first sound (Fig 3A), we found clus-

ters of regions in both conditions (p� 0.006, see Table C in S1 Appendix for full statistical

reports) with peak activity patterns in auditory areas such as superior temporal gyrus and

Heschl’s gyrus, but also, in somatosensory (postcentral gyrus) and association areas (fusi-

form, hippocampus, retrosplenial, posterior cingulate, angular gyrus, inferior parietal cortex;

see Tables D and E in S1 Appendix for a full report of anatomical regions). In addition, activ-

ity patterns in another cluster in both blocks (p< 0.001) peaked at anteromedial (orbitofron-

tal, anterior cingulate), posteromedial (mid-posterior cingulate), and lateral (inferior, middle,

and superior frontal gyri) prefrontal cortex, as well as insula, motor cortex (precentral gyrus),

and subcortical structures including the basal nuclei (putamen, caudate, accumbens, palli-

dum) and the thalamus. Interestingly, after the second sound information about melody iden-

tity was present in association, sensorimotor, and subcortical structures (p< 0.005), but not in

auditory areas (Fig 3B). This reflects the fact that the second sound is the same in both melo-

dies, inducing similar sensory representations in superior temporal cortex while maintaining

distinct melody-wise representations across the brain.

The same areas outlined above represented the melodies after the third sound (p� 0.021;

Fig 3C). Crucially, representations flipped sign in auditory areas and anterior medial temporal

areas (p� 0.003; Fig 3D) such that, during sound 1, melody 2 elicited more positive local field
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potentials than melody 1, whereas for sound 3 melody 1 elicited more positive local field

potentials than melody 2 (Fig D in S1 Appendix). This representational flip underlies below-

chance decoding after sounds 1 and 3 (Fig 4A) and reflects the fact that the 2 melodies are

backward versions of each other. In addition, representations in the prefrontal cortex were

more prominent after sound 1 (p� 0.017, Fig 3D) than sound 3, possibly indicating a more

automatic evaluation at the end than at the beginning of the sequence [36,37]. Overall, these

pieces of evidence suggest 2 types of processing: One concerned with individual sound encod-

ing in auditory and anterior memory regions and another one concerned with holding the

melody as a sequence in association, sensorimotor, and subcortical structures.

2.4.2. Auditory representations during imagination. In the imagination period, melo-

dies were mainly represented in non-auditory areas including basal nuclei, thalamus, mid-pos-

terior cingulate, motor, and parietal cortex (p< 0.001, Fig 4A). Additional recruitment of

inferior temporal cortex, posterior cingulate, precuneus, and auditory areas was observed in

the recall block, and of the lateral prefrontal cortex in the manipulation block. Furthermore,

representations changed in the left lateral prefrontal cortex during manipulation compared to

recall (p = 0.033; Fig 4A) with possible further changes in the right prefrontal cortex and retro-

splenial (Fig E in S1 Appendix). These changes likely underlie the manipulation-driven repre-

sentational flip identified through between-condition testing (Fig 2B).

2.5. Opposite neural activity during listening compared to imagination

Interestingly, patterns of activity switched sign (p< 0.001) between listening and imagination,

with positive local fields in temporal areas becoming negative, and negative fields in anterior

Fig 3. Patterns of neural activity that discriminate between melodies during listening, as derived from decoding coefficients and

averaged over time. Patterns are shown for 3 time windows: (a) Sound 1 (0.2 s–0.5 s), (b) Sound 2 (0.7 s–1 s), and (c) Sound 3 (1.2 s–1.5 s).

The difference between sounds 1 and 3 is also shown (d). Patterns are depicted for 2 types of MEG sensors (planar gradiometers and

magnetometers) and after source reconstruction. For visualization, pairs of planar gradiometers were combined by taking their root mean

square. Significant channels are highlighted with white dots. Source-level activation is shown for significant clusters. fT = “femto Tesla”. See

S3 Fig and the online repository for data and statistical outputs related to the current figure.

https://doi.org/10.1371/journal.pbio.3002858.g003
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association, sensorimotor, and subcortical areas becoming positive after 2 s (Figs 4B and D in

S1 Appendix). A similar switch was reported in studies that decoded imagined sounds from

scalp EEG [30,31] and auditory working memory content with fMRI [25].

Fig 4. (a) Patterns of neural activity that discriminate between melodies during imagination in both conditions (2 s–4

s), as derived from decoding coefficients and averaged over time. The difference between listening and Imagination is

also presented (b). Patterns are depicted for 2 types of MEG sensors (planar gradiometers and magnetometers) and

after source reconstruction. For visualization, pairs of planar gradiometers were combined by taking their root mean

square. Significant channels are highlighted with white dots. Source-level activation is shown for significant clusters. fT

= “femto Tesla”. See S4 Fig and the online repository for data and statistical outputs related to the current figure.

https://doi.org/10.1371/journal.pbio.3002858.g004
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3. Discussion

In this study, we decoded perceived and imagined melodies from neural activity to demon-

strate that musical sound sequences are represented in auditory, association, sensorimotor,

and subcortical areas, and that these representations systematically change when mentally

manipulated. While previous studies have decoded imagined sound information from brain

data [24,26,29–32], here we define the nature and dynamics of the underlying auditory repre-

sentations and show how they change during manipulation.

Above-chance decoding peaked after the onset of the first and third sounds and was sus-

tained during imagination. The highest decoding performance was detected around the diago-

nal of the matrices, which indicates that representations were dynamic and had marginal

generalization over time [23]. During listening, this could be due to the constantly changing

sensory input. During imagination, this might reflect temporal variability between partici-

pants. The lack of generalization further suggests that representations were different between

listening and imagination. This contrasts with research suggesting that perceived and imag-

ined sounds share neural substrates and representations. For example, both imagined and

actual sounds activate secondary auditory areas [13] and fMRI studies decoded imagined audi-

tory representations from primary and secondary auditory cortex [24–27]. Moreover, some

studies found that representations during the omission of predictable sounds are similar to

those of the actual sounds [38,39].

The lack of generalization in our results might arise from 3 factors. First, the melodies dif-

fered in the temporal order of their constituent sounds, which were otherwise the same. Tem-

poral order is an abstract feature that might generalize less across listening and imagination

than sensory features such as pitch, which are typically the target of decoding (e.g., [40]). Sec-

ond, experimental paradigms have either minimized the temporal variability of the imagined

representations (e.g., omission studies) [38,39] or did not take time into account (fMRI stud-

ies) [24–27]. In contrast, our design allows temporal flexibility within a relatively long imagi-

nation period (2 s), which might introduce between-trial and between-subject variations that

blur sound-specific representations. Finally, consistent with previous EEG and fMRI findings

[25,30,31], representations in association, sensorimotor, and subcortical areas were opposite

between listening and imagination (Fig 3B). This flip could reflect a change in the direction of

information flow across the brain, from bottom-up (listening) to top-down (imagination).

Some models propose specific roles for different layers of the cortical sheet, with superficial

pyramidal cells conveying bottom up sensory input, and deep pyramidal cells conveying top-

down expectations [41,42]. It is possible that these layer-specific efferent and afferent activity

patterns result in detectable changes in the direction of local field potentials. Layer-sensitive

recordings are needed to test this hypothesis.

The fact that the melodies were backward versions of each other allowed us to dissociate the

role of different brain areas. During listening, auditory regions encoded the sensory informa-

tion of individual sounds such that representations were opposite after the first and third

tones, and equal during the second sound. In contrast, association and subcortical areas (infe-

rior and medial temporal lobe, ventromedial prefrontal cortex, thalamus, and basal nuclei)

remained stable, while representations in dorsal association areas (lateral prefrontal cortex)

were involved only at sequence onset. Moreover, during imagination, association and subcor-

tical areas were the main carriers of representations, with auditory and temporal areas further

involved during recall, and lateral prefrontal cortex further engaged in manipulation. Overall,

these dynamics suggest 2 types of processing: one concerned with the encoding of sound-spe-

cific sensory information in superior temporal cortex and anterior temporal areas, and another

one concerned with the encoding, retrieval, and manipulation of auditory sequences in
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association and subcortical areas. This dissociation between the sensory and abstract proper-

ties of sound sequences is consistent with a previous scalp EEG study that disentangled pitch

and temporal order representations during sound maintenance in auditory working memory

[43].

The regions that carried auditory representations in our study overlap with those identified

in previous neuroimaging activation studies as important for imagery in audition and other

modalities [4,6–22]. However, a discrepancy of our study is the lack of substantial melody-spe-

cific information in the supplementary motor area, identified as a key region for auditory

imagination [44]. Nevertheless, we found representations in the motor and somatosensory

cortex, which is consistent with previous reports [7,45,46] and might reflect the generation of

auditory expectations through motor simulation. Furthermore, we observed melody-specific

representations in the basal nuclei, a set of areas involved in both cognitive and motor control

that have not been identified in previous auditory imagery research. From these nuclei, the

putamen has been related to motor imagery [47]. Moreover, the basal nuclei are typically stud-

ied with the hemodynamic response in fMRI, which correlates best with high gamma (>60

Hz) power [48] in EEG. In this study, we used instead MEG broadband signals to decode audi-

tory objects, which might be why basal nuclei representations were found here but not in

fMRI. Future research examining high gamma activity and other frequency bands will be

needed to elucidate their relationship with the hemodynamic response.

The task used in this study is similar to the classical delayed match-to-sample paradigm

employed in working memory research. An important difference, however, is that we asked

participants to vividly imagine and mentally manipulate the melodies, whereas in working

memory experiments maintenance strategies usually remain unspecified. Thus, while it is pos-

sible that our participants used unconscious maintenance strategies without imagery, the

explicit task instruction, the good task performance, the vividness ratings, and the between-

condition decoding results suggest that they engaged in active mental recall and manipulation.

Future experiments where imagery is not required are needed to further elucidate the nature

of maintenance strategies and the relationship of imagery with working memory.

This caveat aside, task performance was associated with general working memory scores

and the brain regions identified overlap with those exhibiting delay-period activity in auditory

working memory, including the auditory cortex, the prefrontal cortex, the parietal cortex, and

the medial temporal lobe [19,28,49,50]. Moreover, auditory representations in working mem-

ory have been decoded from the auditory, frontal, and parietal cortices [24,28,43] and from the

functional interaction of these regions [51,52]. Most of these decoding studies, however,

addressed working memory for individual sounds and none investigated sound manipulation.

In addition, there is a tradeoff, with fMRI studies having good spatial but low temporal resolu-

tion, and EEG studies having good temporal but low spatial resolution. The use of MEG

allowed a good localization of auditory representations both in space and time.

Two methodological caveats need to be considered. First, we localized auditory representa-

tions to both cortical and deep brain areas (basal nuclei, thalamus, and hippocampus), raising

concerns given the bias towards the head center of beamforming algorithms [53] and the fact

that activity in such areas is typically hard to detect with MEG. However, we eliminated the

depth bias by normalizing the forward and inverse solutions and verified that the localized

activations are consistent with sensor topographies, especially at the midline (e.g., Fig 3C). In

addition, differences were still found in deep structures when 2 conditions were contrasted

(e.g., imagination versus listening), arguing against a depth bias which should cancel out in

condition contrasts. Furthermore, with implementation of appropriate controls, the use of

beamformers has made the detection of deep sources increasingly common, including the

basal nuclei, the medial temporal lobe, and even the cerebellum [54–57]. Therefore, it is
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unlikely that these deep activity patterns are localization artifacts. The other caveat is the possi-

bility that successful decoding is partly due to extracerebral, motion-related activity. However,

this is also unlikely because we thoroughly cleaned the data from the main sources of contami-

nation (eye movements and heartbeats), the sensor topographies suggest brain generators, and

beamforming algorithms are particularly good at filtering out extracerebral sources.

In conclusion, our results provide evidence regarding the nature and dynamics of perceived

and imagined sound representations in the brain and contribute to a growing body of work

investigating musical imagery and its relationship with other modalities [2,58–63]. Our find-

ings also demonstrate the feasibility of decoding mental auditory representations at a fine tem-

poral resolution with noninvasive methods. This opens the path to clinical applications where

decoding of imagined objects is relevant (e.g., communication impairments). Future work

might employ different recording modalities (e.g., optical MEG, intracranial EEG), bigger data

sets (e.g., by increasing the number of trials), and models that are larger and account for the

temporal variability in imagination (e.g., deep learning) [64] to maximize the decoding of

auditory images.

4. Methods

4.1. Participants

We recorded MEG (Fig 1A) data from 80 participants. From these, 6 were excluded due to

chance behavioral performance and 3 due to noisy or corrupted neural data, resulting in a

final group of 71 participants (44 female, age = 28.77 +/− 8.43 SD). Three of these participants

were excluded from source level analyses due to absence of anatomical images. Participants

had mixed musical backgrounds with most of them [50] never having played a musical instru-

ment (including voice). The other 21 participants had a median of 11 (IQR = [7–16]) years of

musical training. In addition, participants had a median score of 17 (IQR = [13–26], maximum

possible score = 49) in the training subscale of the Goldsmiths Musical Sophistication Index

(GMSI) [34] and of 96 (IQR = [93–105]) in the Wechsler Adult Intelligence Scale (WAIS) [33].

Musical expertise was not a factor in recruitment for this experiment. Participants gave written

informed consent and received a small monetary compensation. The study was approved by

the Institutional Review Board (IRB) of Aarhus University (case number: DNC-IRB-2020-006)

and conducted in accordance with the Helsinki declaration.

4.2. Stimuli

We employed short three-note melodies forming a major chord arpeggio using piano sounds

(musical pitch: A3, C#5, E6; F0: 220Hz, 554Hz, 1318Hz) synthesized with MuseScore (v3.6.2;

see materials’ online repository for the actual sounds used). The sounds were arranged in

ascending order in melody 1 (A-C#-E) and descending order in melody 2 (E-C#-A). Two foil

test melodies were also included: A-E-C# and E-A-C#. The inter-onset interval between indi-

vidual sounds was 500 ms. The sounds were normalized to peak amplitude.

4.3. Task

The experiment was implemented in Psychopy v3.1.2 [65] (see materials’ online repository for

details). On each trial (Fig 1B), participants heard melody 1 or melody 2, together with the

word “Listen” appearing on the screen. After 2 s, participants saw the word “Imagine,” which

indicated that they had to vividly reproduce the melody in their minds. There were 2 condi-

tions, encompassing the 2 different blocks in the experiment. In the recall block, they imagined

the melody as presented, whereas in the manipulation block, they imagined it backwards. Four
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seconds after trial onset, participants heard a test melody, which could be the same as the first

one, its inverted version or a different melody. Participants answered whether the second mel-

ody was the same as the first one or not (recall block) or its inverted version or not (manipula-

tion block). A response time limit of 3.5 s was set. There were 60 trials per block (30 same/

inverted, 30 different/other). The trial number was displayed on the screen for 2.5 s before trial

onset. A quick pause was allowed after the 30th trial. Two practice trials were presented at the

beginning of each block. Conditions were counterbalanced across participants.

4.4. Procedure

At the beginning of the session, we explained in detail the procedure to the participants and

instructed them to vividly imagine the melodies without humming them or moving any part

of the body. We made sure the participant fully understood the nature of the task and was able

to perform practice trials correctly before the MEG recording. After giving written informed

consent, the participants changed into medical clothes, and we attached electrocardiogram

(ECG) and electrooculogram (EOG) electrodes to their skin for heartbeat and eye movement

monitoring. Head shape was digitized with a Polhemus system and head position was continu-

ously tracked during the recording with the help of 3 coils. During the task, the participant sat

in the MEG chair inside a magnetically shielded room and looked at the screen where instruc-

tions and trial information were displayed. The subjects responded to each trial by making a

button press in a response pad with their right hand. Sound stimulation was delivered through

magnetically isolated ear tubes. The task lasted approximately 20 min. Other experimental par-

adigms testing recognition memory were recorded together with this task. Results are reported

elsewhere [57]. The order of the paradigms was counterbalanced across participants. After the

experiment, participants were asked to rate the vividness of imagery during the task on a

7-point Likert scale ranging from −3 to 3.

4.5. MEG recording and preprocessing

MEG data were collected with a 306-channel (102 magnetometers, 204 planar gradiometers)

Elekta Neuromag system and Maxwell-filtered with proprietary software. This step also

involved correcting the data for continuous head movements. Data analyses were conducted

in MNE Python (v0.24) [66]. Vertical and horizontal eye movements as well as heartbeat arti-

facts were corrected with ICA in a semi-automatic routine. Visual inspection was used to

ensure data quality. After high-pass filtering (0.05 Hz cutoff), epochs were extracted from −0.1

s to 4 s around trial onset. For source reconstruction, T1 brain anatomical images were col-

lected with a 3T MRI scanner and segmented and aligned with MEG sensors using Freesurfer.

Source reconstruction was done for the 68 participants with an available MRI. Using the

boundary element method and a single shell mesh (5 mm resolution), volumetric forward

models were created and subsequently inverted with linearly constrained minimum variance

(LCMV) beamforming employing the joint gradiometer covariance across listening and imagi-

nation periods. For similar results obtained with the separate covariance of the listening and

imagination periods, see Fig H in S1 Appendix. Importantly, forward models and inverse

solutions were normalized to eliminate the bias towards the center of the head inherent to

beamformers [53].

4.6. Decoding analysis

We used a time-generalized decoding approach (Fig 1D) [23] based on L1 regularized logistic

regression to classify melody identity (melody 1 versus melody 2) at each time point of the tri-

als, for each participant separately. To assess the representational dynamics, we evaluated the
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models at each time point of the test data. We did 2 types of testing. In within-condition test-

ing, we trained and tested the models with trials of the same condition. In between-condition

testing, we trained the models with trials of one condition (e.g., manipulation) and tested on

trials of the other (e.g., recall). Five-fold cross validation was used for within-condition testing.

To avoid biases in model fitting due to class imbalances related to the exclusion of incorrect

trials, we used a balanced scoring strategy in which the average accuracy was computed sepa-

rately for each class and then combined across classes.

At the group level, we used nonparametric cluster-based permutations [67] to evaluate

whether accuracies in the time-generalization matrices were significantly above or below

chance. Here, chance level corresponds to 0.5 accuracy, as we classified binary melody identity

from brain data. We used a two-sided cluster-defining threshold of p = 0.05 based on one-sam-

ple t tests (p = 0.025 one-sided, t> 1.99) and max sum as the cluster statistic. The cluster-level

significance threshold was set at p = 0.05. The number of permutations was 5,000. The same

statistical approach was used to evaluate whether within-condition accuracy was different

from between-condition accuracy.

4.7. Coefficient inspection

We transformed decoding coefficients (W) into interpretable patterns of activation (A) for

each participant using the method detailed in [35] and defined by the equation:

A ¼ SxWS� 1

ŷ :

Where Sŷ is the covariance of model predictions and Sx is the covariance of neural signals.

We localized the neural generators of these patterns using the inverse solutions described in

section 4.5 (Fig 1F). For each voxel, the magnitude and sign of the orientation with maximum

power were retained. For sensor activity patterns, we used cluster based permutations (see

above) in the whole epoch (0–4) to test whether group-level activity patterns were different

from zero. After projecting individual source-level time courses into MNI standard space, we

also tested against zero the localized patterns averaged across time in the 3 listening

(0.2s – 0.5s, 0.7s – 1s, 1.2s – 1.5s) and 1 imagination (2s – 4s) time windows. For all these peri-

ods, differences between recall and manipulation were also tested. Furthermore, we compared

patterns of average activity between the listening (0s – 2s) and imagination (2s – 4s) periods

and between sounds 1 (0.2s – 0.5s) and 3 (1.2s – 1.5s). Using the Desikan–Killiany parcellation

[68], we obtained the significant peak activation for each region that overlapped with signifi-

cant clusters. We report the regions with the most prominent peaks.

Finally, in a supplemental analysis, we inspected the time courses of activity patterns in 5

groups of regions of interest (ROIs) including 1) right auditory, 2) right posteroventral associa-

tion, 3) right dorsal association, 4) left dorsal association, and 5) right anteroventral/subcorti-

cal areas (Fig D in S1 Appendix). We used cluster based permutations as described above to

evaluate significant differences from zero. We display these patterns together with the evoked

response calculated between –0.1 s and 4 s around trial onset, for each of the 2 melodies and

the 2 conditions (Fig D in S1 Appendix). These evoked responses were source localized with

the same inverse operator as the activity patterns derived from decoding and were subject to

the same statistical tests.
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